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A further development of the work [1] 1s presented here. In comparison
with the paper mentioned, this article contains a study of an elastic-
plastic medium (depending on the effect of compaction) rather than a
rigid-plastic medium, while the flow of the material in the incompress-
ible state achieves a property similar to internal friction. The presence
of an initial elastic component in the (o, 0) diagram allows us to study
the entire process of the propagation of the shock wave including the
emission (radiation) of an elastic wave. This problem is investigated
below as having spherical symmetry.

1. The properties of the medium should be given by means of a law of
volume change and a law of deformation due to change of shape. The law of
volume change (0 — ¢ diagram) is given in the form

6 c of a broken line (Fig. 1). It is assumed that the
medium can exist only in two states: the elastic
A 8 initial (segment OA ) and the compacted incom-

pressible (B,BC) state; the transition to the
second state takes place instantaneously at ¢ =
o, (this assumption requires, in general, a
g proof). o denotes the mean stress and @ denotes
the dilatation. Line OABC corresponds to the
active state (loading state). The unloading in the
elastic state represents a reversible process,
while in the inelastic state the unloading takes
place with a change of volume (straight line CBB,). In the elastic
state (line OA ) the change of shape is subject to Hooke’s law. During
flow in the incompressible state plastic work is expended. It is neces-
sary to make some assumptions about what kind of work this is. In the
plastic flow of metals the influence of the mean stress upon the plastic
work is insignificant. Such an assumption appears not to be applicable
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for soft soil. In this latter case it is more plausible to assume that
the plastic work increases with an increase of the mean stress. So far,
there have been few experiments along these lines. I propose to assume
as a hypothesis (which should be verified by means of an experiment)

that for spherical symmetry the change of the elemental plastic work in
the transition from one state to a neighboring one be proportional to the
change of the largest shear. The proportionality coefficient is assumed
to be a function of the mean stress. This function should be determined
by experiment. The mathematical formulation of this hypothesis is

aAzgggm(a)lsﬂdV (1.1)

Here A is the plastic work, 64 is its change during the transition to
the neighboring state, 8y is the greatest shear during this transition.
As long as there is no experimental information on the function m(o),
one has to make simple expedient assumptions. In the present article I
shall assume that m(0) is a linear function.*

This assumption leads to a plastic medium proposed at first by
Ishlinskii [2]. A similar assumption on the soil property was made by
Kompaneets in [3 1. The following is a study of the propagation of a
spherical wave in the described continuous medium caused by the detonation
of a charge which filled a spherical cavity (cavern). It is assumed that
at t = 0 the explosives occupy the initial volume of the cavity. The ex-
pansion is accomplished adiabatically. We do not analyze the wave process
inside the cavity.

2. We relate the motion to a spherical system of coordinates whose
center is located at the center of the spherical cavity. We denote the
running radius by r, let u(r, t) be the radial displacement, v(r, t) the
radial velocity, o o, og the stress components. Under the conditions
of spherical symmetry og =0, and we obtain for the mean stress

g = ;lT (3r + 20«:)

In the elastic as well as in the plastic state the equation of motion
has the form

do 2(s,— o)

r

av d
b =0, (5 v 5D 2.1

For an elastic medium p 1,2 = P1- It is necessary to supplement Equa-
tion (2.1) by Hooke's law

* A soil model of very general form was proposed by S.S. Grigorian [4 ].

The scheme studied in this paper is a special case of it.
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c,=)\0+2y,%, O = M4 2(‘_6% (0_—__27“+1r“.>
In the elastic state, as usual, we do not differentiate between the
Eulerian and the Lagrangean description of the process, i.e. du/dt =
dv/dt.

In the plastic state, because of incompressibility, we have
C (1)
r=

re

where C(¢) is an arbitrary function. Assuming that then

. o v 3C()

o T o T r T T Ty
and analyzing the plastic flow of an elemental spherical layer, it
follows on the basis of the energy balance that

ds, 3m (o) dv
Substituting from (2.1) we find
5 — 9a = 5 m (3) (2.3)

which represents some "plasticity condition®*. As long as the necessary
experimental results are not available we shall propose that

%m(o) =my + m,
From this follows

1 — mg) o, — my

%= Ty Zmge

’ mo
Mo =3

In this paper we choose for my” the value 1/4. This leads to the
plausible result

Oa = 3O — =M, (2.4)
The constant m, has the dimensions of stress; it is expedient to
assume that m;, > 0.

Let us assume an adiabatic expansion of the explosion products. Thus
we find the stress o, at the walls of the cavity to be

ay

50 (7o) = 9 (@)

where a is the initial radius of the cavity and y the adiabatic exponment.

(2.5)

0/
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It is assumed that the initial stress o, = 04(a) is sufficiently
large and capable of causing in the vicinity of the cavity a compaction
of the soil which then continues to propagate. With the hypotheses stated
above the propagation process of the shock wave can be described in terms
of the following consecutive stages:

1) the compaction shock wave propagates through the undisturbed
medium;

2) an elastic wave propagates through the undisturbed medium; behind
it there follows a compaction zone whose boundary is the shock front,
and the compaction of the soil continues;

3) an elastic wave propagates through the undisturbed medium; behind
it there follows a compacted zone whose boundary is a contact discon-
tinuity. The plastic flow continues, but there is no new compaction of
the medium;

4) a compacted zone is established; the back front of the elastic wave
has broken away from it and goes to infinity.

3. let us set up the equations and boundary conditions for the de-
scription of each of the enumerated stages (the question of uniqueness
of the solution of the problem has not yet been studied).

Let us analyze the first stage (Fig. 2). The radius of the shock wave
is denoted by r ¢+ The mechanical conditions at the shock wave reduce to
the following two:

va(rss ) =ar’,  oy(rs, t) = —aprs?, a=1— % (3.1)

The index 2 refers to the compacted state of
the soil, the index 1 to the elastic state. The
prime indicates differentiation with respect to
time.

In the description we have adopted the soil
represents a medium with a separating energy.
n Thus the mechanical conditions at the shock wave
‘ are not related to the energy conditions, which
should serve as a check for the energy balance

at the shock wave.

The equation of motion (2.1) together with
the incompressibility condition and the plasti-
city condition (2.3) yields the following ex-

FIG. 2. pression for the radial stress component:
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. c '
or = peC (t)‘m_rr"’l"igz"(?q(i)'*'"‘%,(—t) —m (M’=§—ml) (3.2)

Here C(t) and C,(t) are arbitrary functions of time. Functions C(t)
and C,(t), just as two other functions r,(¢) and r (t), should be found
from the boundary conditions. Two conditions (3.1) at the shock wave are
already written out; the two other conditions are stated at the moving
boundary of the cavity

v (ry t) =71, @), o (ro» 1) = 9, (ro) (3.3)

One of the four unknown functions can be taken as the basic unknown
for which, by eliminating the remaining ones, we obtain one equation. We
choose r * as the unknown and denote this quantity by the letter z. We
obtain an ordinary second order differential equation for z, which is
nonlinear and which does not contain time explicitly. If one interchanges
the roles of the unknowns by taking z as the independent variable at
z* = dz/dt at the unknown function then we obtain for z’? a first order
linear equation

dz’? ,
T+ P@)=0Q(@) (3.4)
Here
14 2a3
P =2 2+B 0() = B mi— (x4 B (oo m)
(Z) = 3, 1 Z ’ = aps : Z
T +8 ST + B

Equation (3.4) is to be integrated over the semi-infinite segment
(a%, + ). The initial condition (at z = a®) is obtained if in the other
equations (3.1) and (3.3) one goes over to the limit, letting r, » a and
r. - a.

Thus, we obtain

2% (a%) = _2‘%‘% (3.5)

The function oy, which enters Q(z), depends on z and, according to

(2.5), is expressed by the formula
3
50 (r) = om (g (3.6)

Equation (3.4) is integrated by quadratures; an evaluation of the in-
definite integrals in terms of elementary functions is not performed.
The integrals can be evaluated approximately by different methods. How-
ever, before one goes into approximate numerical calculations, it is
necessary to determine the qualitative properties of Equation (3.4).
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When studying the field of directions determined by this equation, one
can show that the solution of Equation (3.4), which corresponds to the
initial condition (3.5), decreases monitonically with increasing z (at
least, starting from some value of z). Furthermore, evaluating |Q(z) |
one can show that lim z’2 = 0 as z » «. This means that the velocity of
motion of the shock wave front decreases and approaches zero. Such a
derivation leads to the conclusion that the first phase of motion cannot
continue for all time. After the velocity of the shock wave becomes equal,
and later also less than the speed of sound in the undisturbed medium,
there should appear an elastic (sound) wave in front of the shock wave,
i.e. there appears a second phase of motion.

4. The new phase of motion will differ by the conditions at the shock
wave, which now propagates along the zone of elastic disturbance.

Instead of conditions (3.1) we obtain

2
92 (rey 1) = 01 (ryr 1) — T (1’ — 03 (ra OFF (4.1)
Da(rey 1) = 03 (ray 1) 2+ +ar/ (4.2)
In the plastic zone the stress o_ is expressed as before by formula
(3.2).
The conditions (3.3) at the boundary of the cavity are also preserved.

In the elastic zone the radial stresses and the velocity are expressed,
respectively, by the formulas

AR Y e N VS R

v=— P (1) LF (1T (4.4)

apr Qo

where a; is the speed of sound in the elastic medium.

The forward front of the elastic zone does not generate any additional
conditions. The only requirement is its propagation "along the character-
istic," i.e. with sound velocity.

Summing up what we have said so far about the problem of the second
phase of motion, we come to the conclusion that it is necessary here to
determine five unknown functions C(t), C.(t), r,(¢), r_(t) and F(¢),
while there are only four equations (4.2}, (4. lg and (3.3) available. The
additional condition can be obtained from considerations of the stabil-
ity of the shock wave. It is known that independently from the thermo-
dynamic properties of the medium [5 ] the shock wave propagates with
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supersonic velocity along the region which lies ahead of its front and
with subsonic velocity along the region extending behind the front. Be-
hind the front the medium is incompressible, the speed of the propaga-
tion of sound is infinite and therefore the corresponding requirement is
always fulfilled. From the point of view of the second phase of motion,

in this phase the velocity of the shock wave with respect to the particles
lying ahead of the front is always smaller than the velocity of sound in
the region ahead of the front. This means that for 0 < ¢, < o, the motion
will be definitely unstable. If a motion nevertheless takes piace in the
second phase then this will be possible only on one assumption, namely,

that
g = O (4.5)

This assumption we shall treat, in fact, as the missing condition (a
direct proof of the stability of motion in this case should also be per-
formed)*.

Let us also make the following simplification: the second phase occurs
when the radius of the front of the shock wave already considerably ex-
ceeds (several times) the initial radius of the cavity. Then it is
natural to replace formulas (4.3) and (4.4) by the following approxima-
tion:**

~ A42p 4, r —~ _1_ vy T
S N v o R
From the assumption (4.5) considering

S A+2p

I

it follows that the boundary values o, and v at the front of the shock
wave at the side of the elastic region will be

A2
01 ("s, t) = )‘—_T_;/‘:‘;Gu vy ("u t) = ra_._‘;-%; (4-7)

Since now the boundary conditions ahead of the shock wave front are
known, the four equations (4.2), (4.1) and (3.3) are sufficient to de-
termine the four functions C(t), C;(t), ry(¢) and r (t). The unknown
function F*t) is then found from the functional equation

J 2 (t _ rca:t)) - A?—a:;ﬂ’. "o (0 “8)

* See also [6].

** Thig simplification 1s the more correct the smaller the extent of the
second phase of motion. It would be desirable to replace this assump-
tion by more accurate ones in future.
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Conditions (3.3) and (4.2) are explicitly

c )= rozro'r c (t)= ardry -+ ::—lvl
3
From that
d(r’) =@+ 2 2)d () (4.9)

At the beginning of the second phase v,/r ’ is a very small quantity,
and at the end it approaches unity. As a first approximation we take

d(r®) = ad (rs®) (4.10)

This 1s justified by the consideration that in the expansion of the
cavity the main part should be played by the compaction of the soil,
while the contribution to this expansion of the elastic yielding of the
external region cannot be considerable. (This assumption refers to a
disguised explosion. With the participation of a free surface the
mechanism of the expansion of the cavity may be some other one).

The integration of Equation (4.10), taking into account the initial
condition, which requires continuity of r; as a function of r o leads to
the result

ré=ar?+4 B

Now one can introduce, as in the previous section, z = r . as the in-
dependent variable and z°2? as the unknown function. We obtain the follow-
ing equation for this function

3

dz’?2 . 2 2p 22 2a8 _ﬁ A4 2p N\, 18 T
Lt (1) = (R e + )2 — o 0 + ) 2"
A PNt o — 9 (AN 18e1 2, nig_ 3
ape Ut 7 [ln PR 2a (Zo)] apy 12 [a+3pz (1 zo)] (4.11)

Here z, = az + B and function o, is expressed by means of formula
(3.6). This first order equation is nonlinear in z’?. The initial condi-
tion is the continuity condition on z° at the transition from the first
phase of motion to the second one. The continuity of z’ follows from the
fact that although the right-hand sides of the differential equations
(3.4) and (4.11) are different, the changes, however, do not have an
*impulsive* character during the change of the phases of motion. One can
construct isoclinics for Equation (4.11) such that one can clarify the
qualitative character of the motion in the second phase. The study shows
that in this phase z° (and consequently also the velocity of the front
r,”) will decrease monotonically and approach zero.
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5. It is easily shown that the described phase of motion cannot extend
to the state of test. Actually, before r ¢ Boes to zero, the equality
r, = v; will occur, and because of the law of conservation of mass

(rd’ — v))p1 = (rs’ —v3) pe

where r ° = v, should hold. Thus at the given moment the shock wave,
having completely exhausted itself, ceases to exist. However, the motion
still persists. It is natural to describe the following, third, stage of
motion as a motion with a contact discontinuity, where at the boundary,
which separates the compacted region from the elastic one, the velacities
as well as the stresses are equal.

The boundary conditions at the contact discontinuity will then be ex-
pressed as follows:

0y (rs, t) = 0,(rs, 1), Vo (rs, t) =vy(rs, t) (©.1)

One should supplement them by the condition due to which the surface
of the contact discontinuity would consist of identically the same
particles

ry = vy (re, t) (5.2)

The conditions (3.3) at the boundary of the cavity remain the same as
before. Thus we have here five relations for determining the values

C(@), C.(t), ro@), rse(t), vi(re, t), o1(rs, )

The last two functions v, and 0, are independent. Actually, within the
accepted accuracy

0y (res 8) = — (A + zp)vl_(_%.;,_i)

The number of equations corresponds to the number of unknowns which

can thus be found from here. If we introduce as before z = r ‘3, we obtain

a differential equation for this unknown function

gﬂ n z —— 4302'2 —_— _1_8_ g asy .
dz z2— BO 3‘ (Z - 30) - Ps m (z -— ao) =1l
6(A+2p) 22 18m' oy
rreame e (A O (5.3)

Here B, is the volume of the medium compacted during the whole dura-
tion of the process multiplied by 3/4 #. The initial condition on z"2
comes from the continuity of this function at the transition from the
second phase of motion to the third one.

A study of Equation (5.3) shows that z’? goes to zero at some finite
value z. This corresponds to the stopping of the motion of the plastic
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layer. There the third stage of motion ends.

After z°? has been found as a function of z one can determine the law
of motion of the surface of discontinuity (impulsive or contact). In
fact, if

z

2% = f(z), then S

at

_ﬁ‘_t_=t

Vi

under the condition that the time is counted from the instant of the ex-
plosion. It should be noted that, although in principle this third phase

of motion is unavoidable, its duration and the practical meaning are
obviously negligible.

r

6. The last stage of motion, which arises after the stopping of the
plastic zone, remains to be studied. In this stage the motion takes
place only along the outside region where the elastic wave propagates.
Its propagation is determined by that "initial" velocity distribution
which occurs at the instant of the stopping of the plastic zone. There
is then a rear front being formed next to it, which separates it from
the boundary of the compressed zone, and the elastic wave goes to in-
finity. This part of the problem is solved by well-known means.

From our analysis in relation to the accepted values of the parameters,
we can determine the instances of transition of one phase of motion into
the other, the radius and volume of the compacted zone, the radius of the
cavity, the energy of the radiated elastic wave and the energy irre-
versibly lost in plastic deformation. However, the solution of all these
problems requires the completion of numerical calculations. The kine-
matical picture of the propagation of the boundary of the cavity and the
boundary of the compressed medium can be portrayed qualitatively in Fig.
3, where time is plotted along the abscissa, and the boundaries of the
respective regions during all studied phases of motion are plotted along
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the ordinate.

I should like to express my gratitude to A.A. Grib and S.S. Grigorian
for discussing this paper with me.
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